The Bieberbach Conjecture a Minor Thesis Submitted By
نویسنده
چکیده
Since the function z 7→ 1+z 1−z is univalent with image the right half plane, we see that z 7→ ( 1+z 1−z )2 is univalent, so k ∈ S, and the image of k is the entire complex plane except for real numbers ≤ −14 . In 1916, L. Bieberbach [Bi] conjectured that the Koebe function was maximal with respect to the absolute value of the coefficients of its power series. More precisely, he conjectured the following:
منابع مشابه
Involvement of Hypergeometric Functions in The Theory of Harmonic Functions
Harmonic univalent mappings have attracted the serious attention of complex analysts only after the appearance of a basic paper by Clunie and Sheil-Small [4] in 1984. These researchers laid the foundation for the study of harmonic univalent mappings over the unit disk as a generalization of analytic univalent functions. Interestingly, almost at the same time, the famous Bieberbach conjecture wh...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملBieberbach’s conjecture, the de Branges and Weinstein functions and the Askey-Gasper inequality
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [4]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Lou...
متن کاملA Riemannian Bieberbach estimate
The Bieberbach estimate, a pivotal result in the classical theory of univalent functions, states that any injective holomorphic function f on the open unit disc D satisfies |f ′′(0)| ≤ 4|f ′(0)|. We generalize the Bieberbach estimate by proving a version of the inequality that applies to all injective smooth conformal immersions f : D → Rn, n ≥ 2. The new estimate involves two correction terms....
متن کاملRemarks on a Multiplier Conjecture for Univalent Functions
In this paper we study some aspects of a conjecture on the convolution of univalent functions in the unit disk D , which was recently proposed by Grünberg, Ronning, and Ruscheweyh (Trans. Amer. Math. Soc. 322 (1990), 377-393) and is as follows: let 3 := {/ analytic in D: \f"(z)\ < Ref'(z), z £ D} and g, h £ S? (the class of normalized univalent functions in D) . Then Ke(f*g*h)(z)/z > 0 in D . W...
متن کامل